
Version 1.0

Tobias Schlitt (toby@php.net)
Stefan Neufeind (neufeind@php.net)

OpenContent License (OPL) Version 1.0

This document is copyrighted by the authors. It may be reused and
republished under the terms of the OpenContent License version 1.0.

PEAR (PHP Extension and Application Repository) – An introduction.
This article gives an overview of the usage of PEAR and the benefits
you can gain by using PEAR and it's packages.

Agenda

About us... 2

WTFIP... 2

PEAR institutions.. 3

The website.. 3

Support... 3

Hierarchy.. 4

Packages.. 5

Development of packages.. 6

Standards... 6

PEAR installer... 7

Installing the installer... 7

Using the installer... 8

Soon to come: Channel support.. 9

User projects.. 10

Summary.. 10

Questions, ideas, feedback?... 10

About us

Stefan Neufeind is a student from Neuss (Germany) and will shortly finish as a
Bachelor of Computer Science. Beside his studies he works as a freelancer for
SpeedPartner.de. Stefan is very engaged for PEAR development, the QA team
and the documentation team. He currently maintains the packages
Image_Graph, Net_Traceroute, HTTP_Session and Validate.

Tobias Schlitt is currently employed at Deutsche Bank AG and additionally
works as a software architect for the eBranch project. Since 4 years he's
addicted to PHP and contributes actively to PEAR. Tobias maintains the
packages Net_FTP, Image_Text, Image_Tools and Log_Parser and works beside
that actively on the PEAR website. He is also engaged in the PEAR QA team.

WTFIP

What the fuck is PEAR

This question has been asked many times and we are trying to answer it inside
this article.

PEAR means in written words „PHP Extension and Application Repository“. And
the name is program. PEAR provides a huge variety of high quality open source
components to make your life with PHP more comfortable and secure.

PEAR was founded by Stig S. Bakken in 1999 and since then a huge community
has been established around it. PEAR currently contains over 220 packages,
which are maintained by more than 500 developers. In 2003 the „PEAR Group“
has been established, as an institution of regulation and contact point for
external interests.

PEAR's goal is not to provide the highest amount of PHP classes and packages,
but to offer high quality and reliable code packages for use in any kind of PHP
project. The PEAR community actively tries to avoid redundant code inside the
clearly structured repository. Where possible redundant proposed packages are
merged into the existing packages to improve their flexibility, functionality and
quality.

The PEAR community constantly improves PEAR and PHP development in
general by defining standards and creating a common PHP package
infrastructure. For example, the community has defined common coding
standards, which have been taken over by many other projects and companies
to improve the readability of code and to enable foreign developers to easily
dig into their work. Unittests and inline documentation using phpdoc are highly
recommended to maintain quality and a cleanly documented API.

PEAR institutions

The website

One of the most important institutions of PEAR is the PEAR website
(http://pear.php.net). Beside the listing of all available packages sorted in
categories the website provides a large online documentation in several
languages about the PEAR packages and PEAR in general. The online presence
also covers the PEAR bug tracking system, where everyone is free to file bugs
and enhancement-suggestions concerning packages, the website,
documentation and the bug system itself.

Another tool available on the website is PEPr (pronounced 'pepper' – PEar
Proposal system). PEPr's main goal is to allow active and potential developers
to propose new packages to PEAR. The system handles the complete workflow
of a proposal, which includes the formal proposal of a package (including
source, examples etc.), discussion of the package idea and the voting of the
community on if the package should added to PEAR.

The PEAR website additionally provides information and direct contact options
to the developers, as well as detailed information on their packages, release
history and notes.

For developers, the website offers functionality like registering new packages
and uploading new releases of a package. The releases are verified directly
after uploading, to raise their quality.

Last but not least, the website integrates with the backend of the PEAR
installer. The XML_RPC services are hosted there and make use of the common
PEAR infrastructure, as the website does.

Support

PEAR provides several ways of support for users and interested developers.
Besides mailinglists you can reach the developers on IRC, contact the PEAR QA
team or get in touch with the PEAR group. The PEAR website even offers you to
get in direct contact with every maintainer by email.

Mailinglists are a very essential institution of PEAR. Several mailinglists exist for
different purposes. A general support and user mailinglists can be reached at
pear-general@lists.php.net. It's main purpose is help with installation and
usage of the PEAR installer(s) and the packages. The developers, and everyone
interested in the technical part of PEAR, meet at pear-dev@lists.php.net.
Beside those two major discussion points there are additonal special purpose
mailinglists e.g. for QA handling (pear-qa@lists.php.net) and documentation
(pear-doc@lists.php.net).

The public mailinglists are listed on the website inside the support section
(available at http://pear.php.net/support.php). Everyone interested in the
specific topic of a list is invited to subscribe and post to it. Contributors are
welcome at any time.

The official IRC channel of PEAR named #pear can be accessed on the efnet
IRC servers. The partner program PECL provides the channel #php.pecl. In both
channels several developers are available around the clock and can help you
with most of your problems with PEAR in “realtime”.

Beside the official support institutions, PEAR lists external resources on it's
support website (http://pear.php.net/support.php) where you can gain help
from. There are several tutorials, talk slides and 3rd party websites noted.

Hierarchy

PEAR does not implement a strict hierarchy as other projects do. Everyone is
free to propose a new solution to any issue at any time and everyone is free to
criticize everything. Although there exist special groups for different purposes
everybody is free to work actively on those topics.

The highest institution in PEAR is the PEAR group. It has been announce by the
founder of PEAR in 2003, to implement a central regulation institute. The PEAR
group's purpose is not to lead or rule the community, but to step in on
unresolvable issues inside the community and to provide a single point of
contact to the world outside PEAR. It consists of a clearly defined group of
people.

Loose team-structures exist for several other purposes. The youngest one
(founded early in 2004) is the PEAR QA team, which is dedicated to review
packages and point out and clear QA issues. A common task for the QA team is

Illustration 1 - PEAR website - support

to find common solution to PHP4/5 migration problems, carefully track package
changes with regards to BC changes (backward compatibility), provide
suggestions for improvement of code readability/reliability and announce them
to the community.

The documentation team assists the package developers regarding package
documentation, handle documentation translations and care for the common
PEAR documentation on the website. In contrast to the PEAR group, everyone is
free to join these teams and help. Even users and external developers are
welcome to contribute, if they want to give something back to PEAR and do not
want to maintain a whole package or are not able to. For example, it is often
very helpful to improve package documentation from a users point of view. And
(almost) everybody can easily help translating documentation.

Packages

To structure the huge variety of packages PEAR provides, categories were
introduced at very early stage of the PEAR project. They group packages into
logical categories and allow for an easier overview. Examples for category
names are „Authentication“, „File_System“, „HTML“, „Networking“ or „XML“.

Through the website one can browse those categories, take a detailed look at
the contained packages and download the latest releases. The installer
(described further below) is a helpful tool for package handling.

PEAR's intention is to avoid duplication of packages where possible. For that,
redundancy is checked during the package proposal by the community. The
usual way to resolve package duplication is to get in touch with the current
maintainer of the existing implementation and check whether it's possible to
incorporate the new suggestions and improve the existing functionality on a
collaborative basis.

Illustration 2 - PEAR website - package overview

Development of packages

PEAR generally allows it's maintainers to be free in the development of their
packages. However certain rules exist to structure development, to provide
quality and to make life for users easier. One rule is that maintainers are
strongly encouraged to design the API of their packages as flexible and generic
as possible and to not write code again which already exist in a different part of
the PEAR repository. Code duplication can often be resolved by adding
dependencies. PEAR packages can depend on other PEAR packages, PHP
extensions and PHP versions, but may not depend on external PHP code.
External PHP dependencies have to be replaced by internal ones.
Dependencies are shown on the package websites and are also handled by the
PEAR installer.

Standards

Beside those „flexible“ rules PEAR also defines fixed rules every developer has
to stick to. The coding standards for example clearly define details like
indention, function and variable naming and certain coding constructs. Another
example is the definition of reliable package states and a common versioning
system.

A version of a package, which is still under heavy development and maybe not
yet ready to use is called „dev“. The next state is „alpha“, which indicates that
the package should work, but maybe has some missing features and/or still has
several potential bugs. Beside that, during „alpha“ stage the package
maintainer is allowed to break BC (backwards compatibility) by changing the
API of his package.

API breaks are definitely forbidden in beta stage. If a package is declared
„beta“ you can be sure that the API will not change in any next version unless a
new major version (e.g. 2.0) is developed. Beta packages might still have some
bugs but should run fairly stable.

Before a package is really called „stable“ (which is the highest release state), it
should run through a number of RC stages (release candidates) which indicate
that the package is almost ready for production use and that heavy testing is
now required from the user's side (especially to guarantee BC to earlier
versions). RC releases are still in state “beta”.

Several other rules exist in PEAR to unify the development of packages. Beside
the mentioned common names for methods are defined, as well as a standard
for package testing (PHPT and PHPUnit tests). Testing can also be done
automatically through the PEAR installer.

PEAR installer

The PEAR installer provides an easy way for installation, upgrade and removal
of packages. Together with the PEAR website it's one of PEAR's core
components. By accessing the XML_RPC-interface provided by the PEAR
website it is able to negotiate version numbers and states of packages.

Installing the installer

The PEAR installer is shipped (in a stable form) together with PHP since 4.3.0. If
your distribution is shipped without the PEAR installer or contains an
outdated/broken release, it's usually easy to install the PEAR base system with
a little magic. The website http://go-pear.org provides an easy “installer for the
installer”. If you're running Linux and have access to the CLI-version of PHP
simply run

lynx -source http://pear.php.net/go-pear | php -q

Below is a suggested file layout for your new PEAR installation.
To change individual locations, type the number in front of the
directory. Type 'all' to change all of them or simply press Enter
to accept these locations.

 1. Installation prefix : /usr
 2. Binaries directory : $prefix/bin
 3. PHP code directory ($php_dir) : $prefix/share/php
 4. Documentation base directory : $php_dir/docs
 5. Data base directory : $php_dir/data
 6. Tests base directory : $php_dir/tests

1-6, 'all' or Enter to continue:

The following PEAR packages are bundled with PHP: DB, Net_Socket,
Net_SMTP, Mail, XML_Parser, PHPUnit.
Would you like to install these as well? [Y/n] :

Loading zlib: ok
Downloading package: PEAR.............ok
Downloading package: Archive_Tar......ok
Downloading package: Console_Getopt....ok
Downloading package: XML_RPC..........ok
Bootstrapping: PEAR...................(remote) ok
Bootstrapping: Archive_Tar............(remote) ok
Bootstrapping: Console_Getopt.........(remote) ok
Downloading package: DB...............ok
Downloading package: Net_Socket.......ok
Downloading package: Net_SMTP.........ok
Downloading package: Mail.............ok
Downloading package: XML_Parser.......ok
Downloading package: PHPUnit..........ok

Extracting installer..................ok

Through an interactive setup this will download all needed core-
components and install them in the appropriate locations. If you don't
have a lynx (or similar) at hand you can also simply download the
script from http://go-pear.org/ and execute it manually using PHP at
the command line.

If you prefer to use your browser to perform the installation or don't have
command line access, simply place the script on your webserver and open it's
URL in your browser.

Using the installer

Once PEAR is installed the command line installer “pear” offers you commands
that make package handling quite simple. For most common tasks you'll use
“pear <command>” where command is “install”, “uninstall”, “list”, “list-
upgrades” or “upgrade-all”. Entering “pear help” will give you a detailed
overview of the commands and their options. If packages have (optional)

Illustration 3 - go-pear via webbrowser

dependencies the PEAR installer will tell you about this when you're doing an
install/upgrade. As you can see in the illustration PEAR will even update the
main component (itself) when needed. Using the upgrade/upgrade-all
comments allows you to easily track package updates.

pear upgrade-all
Will upgrade date
Will upgrade http
Will upgrade mail
Will upgrade net_smtp
Will upgrade pear
downloading Date-1.4.2.tgz ...
Starting to download Date-1.4.2.tgz (42,318 bytes)
............done: 42,318 bytes
downloading HTTP-1.2.3.tgz ...
Starting to download HTTP-1.2.3.tgz (3,515 bytes)
...done: 3,515 bytes
downloading Mail-1.1.3.tgz ...
Starting to download Mail-1.1.3.tgz (13,415 bytes)
...done: 13,415 bytes
downloading Net_SMTP-1.2.6.tgz ...
Starting to download Net_SMTP-1.2.6.tgz (9,106 bytes)
...done: 9,106 bytes
downloading PEAR-1.3.1.tgz ...
Starting to download PEAR-1.3.1.tgz (95,968 bytes)
...done: 95,968 bytes
upgrade-all ok: Date 1.4.2
upgrade-all ok: HTTP 1.2.3
upgrade-all ok: Net_SMTP 1.2.6
upgrade-all ok: Mail 1.1.3
upgrade-all ok: PEAR 1.3.1

There are also two alternatives available if you prefer to install your PEAR
packages by using a webbrowser (use PEAR-package “PEAR_Frontend_Web”) or
using a desktop application (use PEAR-package “PEAR_Frontend_Gtk”).

You can install packages from the PEAR repository automatically (“pear install
<packagename>”). But the PEAR package format also allows distribution of
packages as files. This way you install your own packages from (downloaded)
files via “pear install mypackage.tgz” or even use direct URLs for installation.

Packages can not just be “classes” but also applications. Distributing
applications in package format allows for easy installation/removal and
automatic dependency-handling. (e.g. PhpOpenTracker by Sebastian Bergmann
uses the PEAR installer: http://www.phpopentracker.de)

Soon to come: Channel support

Since the installer is one of PEAR's core components there are already several
plans for further improvment. One of the most anticipated new features will be
“channel support”. A “channel” is an additional repository beside the PEAR

repository, that you will be able to add to your configuration. This will allow you
and your clients to install classes and applications from various sources,
making distribution of updates a lot easier.

User projects

Now you have a vague idea what PEAR has to offer and how it may simplify
your daily work. Not yet convinced? Here is a list of projects that are already
proud to be using PEAR packages in their applications:

• Horde (Framework)

• TikiWiki (Wiki application)

• S9Y (Weblog application)

• Savant (Template engine)

• Seagull PHP Framework (Framework)

• patUser (Usermanagement package)

• YAWP, Yawiki (Wiki application)

In addition to that, PEAR is used on a large variety of even high traffic websites
and in commercial projects. More and more ISPs also offer ready-to-go PEAR
installations in their webhosting packages.

Summary

So what has PEAR got to offer for you?

• enterprise-ready components

• high-quality packages

• reusable, flexible classes

• improved security by 100 eyes watching the code

• help via community and direct contact to maintainers

• easy and fast installation/upgrading of packages

• automatic installation of needed packages via dependencies

• free licenses (PHP license, LGPL, ...):
can even be used "for free" in commercial applications

Questions, ideas, feedback?

We hope to have piqued your interest in PEAR. Maybe consider taking a closer
look at the available components and see how your projects can benefit from
using PEAR packages.

Your feedback on this introduction is very much appreciated. Please feel free to
contact us by email, come around on IRC, post your thoughts on the pear-
general mailinglist ... or meet us at the next conf :-))

